280 research outputs found

    Win Prediction in Esports: Mixed-Rank Match Prediction in Multi-player Online Battle Arena Games

    Get PDF
    Esports has emerged as a popular genre for players as well as spectators, supporting a global entertainment industry. Esports analytics has evolved to address the requirement for data-driven feedback, and is focused on cyber-athlete evaluation, strategy and prediction. Towards the latter, previous work has used match data from a variety of player ranks from hobbyist to professional players. However, professional players have been shown to behave differently than lower ranked players. Given the comparatively limited supply of professional data, a key question is thus whether mixed-rank match datasets can be used to create data-driven models which predict winners in professional matches and provide a simple in-game statistic for viewers and broadcasters. Here we show that, although there is a slightly reduced accuracy, mixed-rank datasets can be used to predict the outcome of professional matches, with suitably optimized configurations

    Study of the impact of Enterprise Investment Scheme (EIS) and Venture Capital Trusts (VCT) on company performance

    Get PDF
    Research reportThis study assesses the impact of Enterprise Investment Scheme (EIS) and Venture Capital Trusts (VCT) tax relief on the UK economy, and whether these interventions have been worthwhile. Overall, the findings indicate that EIS and VCT investments have had a positive effect on capacity building in recipient companies. However, in material terms, these effects remain very small. There is some limited evidence of a profit-enhancing effect. However, both schemes appear to be associated with differentials in performance depending on the size, age and sector of the recipient company

    A Survey of Monte Carlo Tree Search Methods

    Get PDF
    Monte Carlo tree search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarize the results from the key game and nongame domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work

    A multi-arm bandit neighbourhood search for routing and scheduling problems

    Get PDF
    Abstract Local search based meta-heuristics such as variable neighbourhood search have achieved remarkable success in solving complex combinatorial problems. Local search techniques are becoming increasingly popular and are used in a wide variety of meta-heuristics, such as genetic algorithms. Typically, local search iteratively improves a solution by making a series of small moves. Traditionally these methods do not employ any learning mechanism. We treat the selection of a local search neighbourhood as a dynamic multi- armed bandit (D-MAB) problem where learning techniques for solving the D-MAB can be used to guide the local search process. We present a D-MAB neighbourhood search (D-MABNS) which can be embedded within any meta- heuristic or hyperheuristic framework. Given a set of neighbourhoods, the aim of D-MABNS is to adapt the search sequence, testing promising solutions rst. We demonstrate the eectiveness of D-MABNS on two vehicle routing and scheduling problems, the real-world geographically distributed mainte- nance problem (GDMP) and the periodic vehicle routing problem (PVRP). We present comparisons to benchmark instances and give a detailed analysis of parameters, performance and behaviour. Keywords Meta-heuristic Local search Vehicle routin

    The 2013 Multi-objective Physical Travelling Salesman Problem Competition

    Get PDF
    This paper presents the game, framework, rules and results of the Multi-objective Physical Travelling Salesman Problem (MO-PTSP) Competition, that was held at the 2013 IEEE Conference on Computational Intelligence in Games (CIG). The MO-PTSP is a real-time game that can be seen as a modification of the Travelling Salesman Problem, where the player controls a ship that must visit a series of waypoints in a maze while minimizing three opposing goals: Time spent, fuel consumed and damage taken. The rankings of the competition are computed using multi-objective concepts, a novel approach in the field of game artificial intelligence competitions. The winning entry of the contest is also explained in detail. This controller is based on the Monte Carlo Tree Search algorithm, and employed Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for parameter tuning
    corecore